skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rodriguez-Fajardo, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Andrews, D; Galvez, E; Rubinsztein-Dunlop (Ed.)
    Einstein beams are coherent optical beams generated by the conditions of gravitational lensing. In the ray picture, Einstein beams are formed by the intersection of light rays deflected by a lensing mass, similar to nondiffracting Bessel beams, but with the difference that adjacent rays diverge slightly. When accounting for the wave properties of light, they form beam-like diffraction patterns that preserve their shape but expand as the light propagates. The addition of a topological charge to the light, leads to more complex patterns carrying orbital angular momentum. For symmetric lensing conditions, Einstein beams carry modes described by confluent hypergeometric functions, which can be approximated by Bessel functions. A theoretical analysis of this is presented here. In astrophysical observations, many of these features can only be inferred because conditions of coherence and alignment make them difficult to observe. Studies of Einstein beams in the laboratory can be used to inform astrophysical observations and discover new non-astrophysical laboratory applications. 
    more » « less